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MODULE 12 

Quantum Mechanics – free particle, Dirac Delta 

Function, 1D Potential 

The free particle 

 

For a free particle, the potential  V(x) = 0 every where  

substituting this value inthe Schrodinger equation 




EV
dx

d

m


2

22

2


       [1] 

where m is the mass of the free particle, ψ, the wavefunction representing the 

state of the particle, V the potential experienced by the particle and E its total 

energy. 

Putting V = 0 ( as free particle is one not affected by a repulsive or attractive 

potential )we get 




 E
dx

d

m2 2

22
      [2] 
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Xing [2] by 
2

2



m
   


22

2 2



mE

dx

d
      [3] 

If we substitute  


mE2
k         [4] 

we get 

0k
dx

d 2

2

2




       [5] 

This is the form of Schrodinger equation for a free particle. The solution for 

the above equation can be 

ikxikx BeeAx )(        [6] 

The first term in equation [6] represents a wave travelling to right and second 

term represent a wave travelling to left. 

But 



mE
k

2


   
2

2 mE2
k


  

m2

k
E

22
        [7] 

The states of a free particle are propagating waves with wavelength  

k

2
         [8] 

But the de Broglie relation   



h

p  
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where p is the momentum of the free particle 

But   
 

k

h
p

1
2

2/ 






   






2
k  

kp         [9] 

The speed of such a particle in given by 

k
v


  

But 
m

k

2

22
    

m

k

2

2
  

m

k

k

m
k

v
2

2

2


  

According to quantum theory the speed of a free particle 

m

E

m

k
vquantam

22




     [10]

 

A wave packet is a superposition of sinusoidal waves whose amplitude is 

modulated by phase .  
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A free particle is represented by a wave packet which is formed by addition of 

sinusoidal waves. Sinusoidal wave is formed by addition of sinusoidal waves. 

Sinusoidal waves add to form a wave packet. Individual waves forming the packet 

travels but the packet travels with a group velocity. The velocity of the envelope is 

called group velocity while individual velocity of the waves are called phase 

velocity or wave velocity which do not make any physically observable effects. 

The wave function representing a free particle is given by 

ikxeA)t,x( 
         [11] 

For normalization, the condition is 






 dx*
 

 








  dx|A|dxAe.Ae 2ikxikx
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The wave function f a free particle are not normalizable. Ie the free particle 

cannot exist in a stationary state. 

The Delta Function Potential 

Bound states and scattered state 

The one dimensional schrodinger equation is given by 












EV

dx

d

m2 2

22
        [12] 

Two kinds of solution are possible for this equation if E<V where E is the 

total energy of the particle and V is the prevailing potential in the region through 

which the particle is travelling in this case the particle gets trapped in the potential 

and this state is called bound state. For example in the case of electron inside a 

hydrogen atom, its kinetic energy is less than that of the attraction by the nucleus. 

Hence it can only admit bound state solution. But if E>V, In such a case a particle 

coming from infinity slows down or accelerates near d potential depending an its 

type and returns to infinity. This state is called scattered state. Some potentials 

admit only bound states, some allow only scattered states and same permit both 

kinds of solutions. 

https://www.youtube.com/watch?v=MpXA8nbby1E 

 

 

https://www.youtube.com/watch?v=MpXA8nbby1E
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Dirac Delta Function (DDF) 

DDF is an infinitely high and infinitesimally narrow spike at the origin and is 

represented mathematically as 
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







0xif)x(

0xif0)x(
         [13] 

Also 




 1dx)x(          [14] 

)ax()a(f)ax()x(f         [15] 

and 






 )a(fdx)ax()x(f         [16] 

Consider a potential form 

)x()x(V           [17] 

The Schrodinger equation is given by 












EV

dx

d

m2 2

22
        [18] 




E)x(
dx

d

m2 2

22
        [19] 

For bound states E < 0 and for scattered States E > 0 

For region x < 0  V(x) = 0      [20] 

Schrodinger equation becomes 





 2

22

2

k
mE2

dx

d


        [21] 

Where 
2

2 mE2
k




   



mE2
k


      [22] 
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As E < 0 ie E is negative, so k will be real and positive. 

The general solution to equation 10 is 

kxkx BeAe)x(  
         [23] 

But x varies from O to   

In this lint kxe for x and there the probability * is not defined  

This can be avoided by choosing A = 0 

kxBe)x(            [24] 

In the region x > 0 V(x) = 0       [25] 

Hence solution will be 

kxFe)x(   for x > 0        [26] 

e+kx is avoided as x kxe  

But in quantum mechanics should be well behaved 

1.    should be always continuous  

2. 
dx

d
is continuous except where )x(V      [27] 

If we apply 1st boundary condition 

0.k0.k FeBe    At x = 0 

ie B = F  
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 
0xBe)x(

0xBe)x(
kx

kx






       [28] 

By integrating the schrodinger equation from –E to +E and then taking limits 

0E  

 









 E

E

E

E

2

22

dx)x()x(Vdx
dx

d

m2


 







E

E

dx)x(E           [29] 

 

The first integral evaluates to 
dx

d
and should apply limits and find upper limit 

minus lower limit denoted by 

Ex

Ex
xxdx

d















         [30] 

The last integral 







E

E

0dx)x(           [31] 

With in the limit 0  











E

E
02

dx)x()x(VLin
m2

dx

d


       [32] 

Substituting for )x(d)x(V         [33] 
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






E

E
0E

)0(dx)x()x(Lin  

)0(
m2

dx

d
2










        [34] 

Recalling equation (17) 

kxBke
dx

d 


   x > 0       [35] 

kxe.kB
dx

d



  x < 0       [36] 

Bk
dx

d

0






  }Bk
dx

d

0






      [37] 

BkBk
dx

d



   = -2Bk      [38] 

Substituting is eqn. (23) 

)0(
md2

Bk2
2







        [39] 

Substituting for x = 0  B)0(        [40] 

2

m
k




           [41] 

But 


mE2
k


   from eqn. (11) 

2

22222

m2

m

m2

k
E



 



  
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2

2

2

m
E




   eqn for Energy 

Normalizing   

  


 




0

0

kx22kx222 dxeBdxeBdx|)x(|  

This can be written as 

 







0

kx222 dxe|B|2dx|)x(|  
















0

kx2

2

k2

e
|B|2  

Applying limits we get 






 1
k

|B|
dx|)x(|

2

2
 

k|B| 2   or  k|B|   

ie


mx
|B|    

2

mx
k


   

x
mx

2

e
mx

)x( 





   Wave function     [42] 

Energy 
2

2

2

m
E






         [43]
 

ie Regard less of its strength a delta function potential has one bound state. 

https://www.youtube.com/watch?v=J-oyM1GyyDk 

https://www.youtube.com/watch?v=J-oyM1GyyDk
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Finite square well potential 

 

 

 

 

 

 

 

 

 

 

One dimensional square well potential is defined as 















regionIIIax0)x(V

regionIIaxaV)x(V

regionIax0)x(V

0

      [44]

 

Consider the case E < 0 (bound states) A particle trapped in a well cannot 

enter region I and region III classically. 

The Schrodinger equation for the region are 
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Eu
dx

Ud

m2 2

22


 

  I and III regions     [45] 

EUUV
dx

Ud

m2
02

22


 

  II region     [46] 

Let 
2

2 mE2


          [47] 

)VE(
m2

02

2 


         [48] 

If E > 0 ie. for scattered states 




22

2 mE2

dx

d

          [49]
 

E is +ve    


mE2
k 

        [50] 

  
 

So that 
 2

2

2

k
dx

d
d  

0k
dx

d 2

2

2




         [51]
 

General solution is 

ikxikx BeAe)x(    for x < 0      [52] 

ikxikx GeFe)x(    for x > 0      [53] 
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Also A
i1

i
B




   and A

i1

1
F




     [54]

 

Where 
k

mx
2

  

Reflection coefficient and Transmission  Coefficient are  

2

2

1
|R|




    [55]  

21

1
T


     [56] 

and   R + T = 1        [58] 

0U
dx

Ud 2

2

2

          [59] 

0U
dx

Ud 2

2

2

          [60] 

The solution for the above equation are 

x
I eCxU  )(]61[    ax   

x
III eDxU  )(]62[   

x
III eDxU  )(]63[  

xBxAxU II  sincos)(]64[   axa   

For the well behaviour of the wave function 

axIII UU  |]65[   axIIIII UU  |]66[  

ax
III

dx

dU

dx

dU
 |]67[  ax

IIIII

dx

dU

dx

dU
 |]68[  

Applying in eqn. (59) 
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)asin(B)acos(AeC a 
 

asinBacosAeC a 
        [69] 

as  cos)cos(sin)sin(  

Applying in equations 

 
axaxat

x xcosB)xsin)(A(|eC


   

ie acosBasinAeC a  
       [70] 

Applying in eqn. (12) 

asinBacosADe a 
        [72] 

acosBainSAeD a  
      [73] 

Adding and subtracting the above equations  





























)d(18asinA2e)DC(

)c(18asinB2e)DC(

)b(18acosB2e)DC(

)a(18acosA2e)DC(

a

a

a

a

      [74] 

Case 1   if 0A0DC   









)c(18/)b(18acot

)a(18/)d(18atan
       [75] 

acotatan   

ie
asin

acos

acos

asin









         [76] 
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ie 0acosasin 22          [77] 

This result is absurd. This can be avoided if we take B = 0 ie. C – D = 0 

0BandDC    One set of solution 

Case 2 

0B0DC           [78] 

Here also 0asinacos 22    

This situation can be avoided by taken 

A = 0  C = -D 

Eigen Function 

Two sets of solution are 

0Band

atan
DC




   acosAeD a  

     [79] 

I set of wave function are 

  x

n

aI

n

nn eacosAe)x(U


  

xcosA)x(U
n

II

n
  

  x

n

aIII

n

nn eacosAe)x(U


  

For second set 

C = -D  A = 0  asinBeD a  
     [80] 
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 

  

















x

n

aIII

n

n

II

n

x

n

naI

n

en

n

easinBe)x(U

xsinB)x(U

easineB)x(U

       [90] 

First set of solutions satisfy 

)x(U)x(U
nn
          [91] 

There function here even parity and for the second set 

)x(U)x(U
nn
          [92] 

There functions here odd parity. 

 

Eigen values of energy 

)VE(
m2

02

2 


         [93] 

2

2 mE2


           [94] 

22

2

0
mV2




         [95] 

Xing by a2 

  22

2

2

0 a
amV2 


        [96] 

Putting 
2

2

ma2


          [97] 
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  2220 a
V




         [98] 

But atan          [99] 

 2220 atan
V




         [100] 

222 a)1a(tan   

222 aasec   

acos

a
2

22




           [101] 








 


0

222

V
aBacos          [102] 

Or 

2/1

0
V

a|acos| 






 
         [103] 

Case 2 acot          [104] 

2220 a)acot1(
V




        [105] 

aeccosaB 222           [106] 

asin

aV
2

22

0







          [107] 

2/1

0
V

a|asin| 






 
         [108] 
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Only at intersection points the equations (39) and (44) are valid.  can take 

only discrete values given by intersecting points. 


0
V

 is a measure of the 

strength of the potential. Thus the energies if the particle have to be quantized. 
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https://www.youtube.com/watch?v=E7RMF9cRxls 
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